# 3-D STRUCTURES IN HETEROGENOUS CRYO-EM DATA SETS

**Zhong Huang, Pawel Penczek** 

The University of Texas – Houston Medical School,

Department of Biochemistry



### Heterogeneity and single particle analysis

- Assumption of single particle analysis: Specimen has structural 'integrity', so all particles can be treated as copies of (in principle) the same structure (JF, 1996)
- In practice, all EM datasets have a degree of structural heterogeneity.
- Causes/types of protein heterogeneity:
  - mixture of different types of proteins
  - substoichiometric ligand binding
  - multiple conformations/ functional scale (large scale open/close states, subunit rearrangement)
  - flexibility of protein
  - fluctuations of the structure around the ground state

### General principle of clustering



# Cluster analysis is a poorly defined problem!

- Clustering is the process of identifying natural groupings in the data
- *Clustering* is the assignment of a set of objects into subsets so that objects in the same cluster are similar in some sense

### Unsupervised learning technique

No predefined class labels

 $\blacksquare$  Assign n object to K classes such that an overall mathematical criterion is optimized:

SSE - Sum of Squared Errors/Sum of Within Class Variances

### SSE K-means



how to arrive at optimum partition?

Compute SSE for all possible partitions and select partition with the smallest SSE.

There are approximately  $K^n / K!$  possibilities in which n objects can be partitioned among K classes.

for K=5; n=10,000 it is  $\sim 10^{6974}$ 

### Current approaches: multi-reference refinement (MRR)

MRR is equivalent to *K*-means clustering, with the distance between images defined as a maximum similarity over the permissible range of image rotations and translations.

K-means results also depend on another nontrivial problem: the 3-D alignment of 2-D images.

Because the 2-D images are all aligned to one reference volume, the adjustment of 3-D parameters might subtly affect the 3-D structures of subsets



### K-means clustering

#### **KNOWN PROPERTIES:**

- Very fast convergence guaranteed in a finite number of steps
- Converges only to a local minimum
- Unclear how to determine the appropriate number of classes (K)
- The solution (final structure) depends on the initial set of particle images, and will change if clustering is repeated using different initializations.





# 3D sorting is guided/validated by the analysis of 3D variability

Two dedicated methods implemented in SPARX:

- 3D variability http://sparx-em.org/sparxwiki/sx3dvariability
- 3D local resolution http://sparx-em.org/sparxwiki/sxlocres



### **3D variability**



$$\sigma_{2D}^2 = \sum_k \sigma_k^2 + \sum_k \sum_{l \neq k} cov_{kl}$$

- 2D variance can be zero even if 3D variance is non-zero
- For substoichiometric binding of large ligands
  2D variance is increased by positive covariances



# 3D local resolution computed as proper FSC





### EQK<sup>(EQUAL GROUP SIZE)</sup>- means clustering-convergeunder-control

Assign n images to K classes such that each class contains  $\frac{n}{K}$  images

| EQK-means group assignments minimum distance to all templates, maximum number per group=3 |              |              |     |            |   |
|-------------------------------------------------------------------------------------------|--------------|--------------|-----|------------|---|
| 9                                                                                         | 1            | 8            | ••• | 8          | 2 |
|                                                                                           | $d_{11}^{2}$ | $d_{12}^{2}$ |     | $d_{1K}^2$ |   |
|                                                                                           | $d_{21}^2$   | $d_{22}^2$   | ••• | $d_{2K}^2$ |   |
|                                                                                           | $d_{31}^2$   | $d_{32}^{2}$ | ••• | $d_{3K}^2$ |   |
|                                                                                           | $d_{41}^2$   | $d_{42}^2$   |     | $d_{4K}^2$ |   |
|                                                                                           | $d_{51}^2$   | $d_{52}^2$   | ••• | $d_{5K}^2$ |   |
| :                                                                                         | •            |              | ÷   | į          |   |
|                                                                                           | $d_{n1}^2$   | $d_{n2}^2$   |     | $d_{nK}^2$ |   |

### Multiple assignment problem

First clustering Second clustering

For matching two sets of assignments, the solution is given in polynomial time by the Hungarian algorithm

### Reproducible sorting

SET: number of groups K minimum group size



### Sorting, phase two: validation

Reproducible sorting
1



Reproducible sorting

Two-way reproducibility

K-means clustering on validated groups



### Analysis of an experimental cryoEM ribosome data set.

Scheres, S.H., Gao, H., Valle, M., Herman, G.T., Eggermont, P.P., Frank, J., Carazo, J.M., **2007**. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods 4, 27-29.



### Subset reprocessed.

Scheres SH, **2012**. A Bayesian view on cryo-EM structure determination. J Mol Biol 415, p.406.



### Processing in SPARX with validation

- 10,000 particles
- image size 128x128
- pixel size 2.8 Angstrom/pixel
- Refined to 9.6Å @0.5-FSC.



### Local resolution (FSC-based)





### Sorting results

number of images: 10001; window size: 64 requested number of images per group: 2500

minimum group size: 100

Unaccounted images: 7%

Reproducibility: 93%







Ratcheted
E, EFG
43% (3 groups)

Unratcheted E, P 12%

P, A 25% not shown 6%

50S

### Principle of focused classification

Penczek, P.A., Frank, J., Spahn, Ch.M.T.: A method of focused classification, based on the bootstrap 3-D variance analysis, and its application to EF-G-dependent translocation. *J. Struct. Biol.* 154: 184-194, **2006**.

1. Create a 3D mask around locations of high 3D variability



2. Project 3D mask in the directions of the particle views

 Calculate distances between reprojections of a 3D map and 2D EM data only within 2D regions outlined by respective projections of 3D mask.

### Focused mask



### Focused sorting results

number of images: 10001; window size: 64 requested number of images per group: 2000

minimum group size: 100

R

Unaccounted images: 17% Reproducibility: 83%



Ratcheted Unratcheted E, EFG E, P,(A, A', A") P, A 39% (3 groups) 16% 9% 2% 7%

50S not shown 6%

### Known problems

- 1. Ribosome has "binary" groups.
- 2. Distance problem
- 3. Sensitivity to the number of groups

### Conclusions

- 1. A simple and intuitive approach with outcome validation based on reproducibility concept.
- 2. sort3d requires a minimal number of parameters:
  - 1. Desirable number of images per group
  - 2. Minimum group size
- Reproducibility and optimization result in a relatively long computation time.
- 4. Extensive statistical diagnostics.

### **ACKNOWLEDGMENTS**

**Zhong Huang** 



Justus Loerke Christian M.T. Spahn



Francisco Asturias



Steve Ludtke





