CTF, micrograph evaluation

Misha Sherman, UTMB May 7th 2019

Lenses

Optical systems – ideal vs. real

Ideal lens – object point -> point in the image

Real lens – object point -> smeared disk in the image

From Meek, 1st ed., Fig. 1.22, p.35 and Sjostrand, Fig. IV.18, p.115

For axially symmetrical lenses object points -> circular disks (Airy disks)

Phase vs. amplitude contrast

Phase:

A transparent object varies in refractive index and/or thickness, but does not cause amplitude changes in illumination.

A plane wave of uniform amplitude falls on the specimen and emerges with uniform amplitude A_0 but with phase variations over the plane surface.

 $T(x,y) = A_0 exp[i\varphi(x,y)]$, for simplicity $A_0 = 1$

Assuming that the object is thin and the phase shift φ is small ($\varphi <<1$), the emerged wave can be described as

exp [if] $\approx 1 + i\varphi$, weak phase object;

then $T(x,y) \approx 1 + i\varphi$; **Observed intensity** $T^2(x,y) = 1 - \varphi^2 \approx 1$

Amplitude:

 $T(x,y) = Aexp[i\varphi(x,y)];$ A varies, linear contrast transfer; even small variations are visible

Phase plate

(phase -> amplitude contrast conversion)

electrode lead

Majorovits E, Barton B, Schultheiss K, Perez-Willard F, Gerthsen D, Schroder RR. Ultramicroscopy. 2007 107(2-3):213-26.

Phase plates

K. Nagayama Another 60 years in electron microscopy S53

Fig. 9. Four examples of single-particle analysis based on cryo-electron microscopy. (a) A protein, GroEL (1: DPC image (300 kV), 2: ZPC image (300 kV), 3: 3D model) [from Fig. 2 of ref. 25]. (b) A membrane protein, TRPV4 (1: DPC image (300 kV), 2: ZPC image (300 kV), 3: 3D model) [from Figs. 3 and 6 of ref. 26]. (c) A bacteriophage, epsilon 15 (1: DPC image (200 kV), 2: ZPC image (200 kV), 3: 3D model) [from Figs. 2 and 3 of ref. 27]. (d) A capsid of herpes simplex virus type I (1: DPC image (200 kV), 2: ZPC image (200 kV), 3: 3D model) [from Figs. 1 and 2 of ref. 29].

Aberrations in optics

Contrast Transfer Function (CTF) of a microscope

Ideal microscope

Contrast Transfer Function (CTF) of the microscope

- $\rho_{im} = \rho_{obj} \otimes PSF$ (*real space*). *PSF* Point Spread Function
- CTF = F(PSF)
- ρ_{im} = ρ_{obj}⊗F⁻¹(CTF) (*real space*). F⁻¹(CTF) Point Spread Function
 I_{im} = I_{obj}•H, where H = CTF envelopes (*reciprocal, or diffraction, or*) Fourier space)

•
$$CTF(\omega) = \sqrt{(1-a^2)} \cdot \sin(\Gamma(\omega)) + a \cdot \cos(\Gamma(\omega))$$

 $\Gamma(\omega) \approx -\frac{1}{4}C_{s}\omega^{4} + \frac{1}{2}\Delta z\omega^{2}$

- Astigmatism: $\Delta z \Rightarrow \frac{1}{2} (\Delta z_{max} + \Delta z_{min} + 2(\Delta z_{max} - \Delta z_{min})\cos(2\gamma));$ γ - angle from x-axis to major axis of astigmatism
- CTF is largely restorable except for places where it is close to zero

Point spread function

Thin pointed brush

Convolution

Convolution is a function describing distribution of one function by the other. It is defined as:

$$g(t) = \int g(x)h(t-x)dx = g(x) * h(x),$$

Or:

FT(J) = FT(G)*FT(H), where FT is Fourier transform

Point spread function and convolution

Convolution of two functions

Defocus series of ferritin molecules on a carbon support film, V=100keV

CTF (blue) and envelope functions (green and light blue) vs. spatial frequency

-Envelopes

Temporal

Spatial Combined

• CM 300 EM (FEI, 300 keV) image spectrum. 500 nm defocus.

Contrast Transfer Function (CTF) of a microscope

- Envelopes (envelope functions):
 - HT instability,
 - Lens current instability,
 - Spatial and temporal (energy spread) coherence of the primary beam.
 - Electromagnetic stray fields.
 - Vibrations.
- They all cause signal falloff at high resolution, some of them are defocus-dependent. These are destructive defects

Examples of image power spectra with different defects

Large defocus, astigmatism

Strong astigmatism

Specimen drift, astigmatism

Sum of two images shifted relative to each other, astigmatism (Young fringes)

Drift

CTF correction; Wiener filtering

• $I_{im} = I_{obj} \bullet H$, where $H = CTF \bullet$ envelopes

• $I_{restored} = \frac{I_{im}}{H}$, where $H \neq 0$ (no noise) or, better: $I_{restored} = \frac{I_{im} \bullet H}{H^2 + (\frac{N}{S})^2}$, where N is noise, and S is signal

- If signal is strong, then $I_{restored} = I_{im}/H$; but
- If signal is weak then $I_{restored} \approx 0$
- The latter formula is called "Wiener filter", an optimal filter

Good image

Good image, No sample

Crystalline ice present

Heavy contamination

References

- Erickson, H. P. and A. Klug (1971) "Measurement and compensation of defocusing and aberrations by fourier processing of electron micrographs." Phil. Trans. R. Soc. Lond. B. 261:105-118.
- Dubochet, J., M. Adrian, J.-J. Chang, J.-C. Homo, Lepault, J., A. W. McDowall and P. Schultz (1988) "Cryo-electron microscopy of vitrified specimens." Quart. Rev. Biophys. 21:129-228.
- Toyoshima, C. and N. Unwin (1988) "Contrast transfer for frozen-hydrated specimens: determination from pairs of defocused images." Ultramicrosc. 25:279-292.
- Zemlin, F. (1994) Expected contribution of the field-emission gun to high-resolution transmission electron microscopy. Micron 25:223-226.
- Zemlin, F. (1992) "Desired features of cryoelectron microscope for the electron crystallography of biological material." Ultramicrosc. 46:25-32.
- Frank, J., "Three-dimensional electron microscopy of macromolecular assemblies." 1996, 2006: ISBN 978-0-12-265040-6
- Rohou, A. and N. Grigorieff (2015). "CTFFIND4: Fast and accurate defocus estimation from electron micrographs." Journal of Structural Biology **192**(2): 216-221.
- Zheng, S. Q., E. Palovcak, J.-P. Armache, K. A. Verba, Y. Cheng and D. A. Agard (2017). "MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy." <u>Nature Methods</u> **14**: 331.