

Outline

- 3D reconstruction
- Goal
- Requirements
- Reference-based alignment vs. ab initio reconstruction
- Different methods
- Common lines/angular reconstitution
- Random conical tilt
- VIPER

Outline

- 3D reconstruction
- Goal
- Requirements
- Reference-based alignment vs. ab initio reconstruction
- Different methods
- Common lines/angular reconstitution
- Random conical tilt
- VIPER

What information do we need for a 3D reconstruction?

1. different orientations
2. known orientations
3. many particles

You can be fooled if you don't have different orientations

3D reconstruction: Parameters required

Two translational: Δx
 Δy

Three orientational (Euler angles):
ϕ (about z axis)
θ (about y)
ψ (about new z)

Outline

- 3D reconstruction
- Goal
- Requirements
- Reference-based alignment vs. ab initio reconstruction
- Different methods
- Common lines/angular reconstitution
- Random conical tilt
- VIPER

Reference-based alignment

The model

(The extra features helped determine handedness in noisy reconstructions.)

Reference-based alignment

From Penczek et al. (1994), Ultramicroscopy 53: 251-70.

Steps:

1. Compare the experimental image to all of the reference projections.
2. Find the reference projection with which the experimental image matches best.
3. Assign the Euler angles of that reference projection to the experimental image.

Outline

- 3D reconstruction
- Goal
- Requirements
- Reference-based alignment vs. ab initio reconstruction
- Different methods
- Common lines/angular reconstitution
- Random conical tilt
- VIPER

Projection theorem: (or Central Section Theorem)

- The 2D Fourier transform of a projection image represents one section through the 3D Fourier transform of a volume.
- Each 2D FT goes through the origin in the 3D FT.
- If you can populate the 3D FT with enough 2D sections, you can reconstruct the 3D volume.
- Task: to find the relative orientations of each of the 2D sections $(\Delta x, \Delta y, \phi, \theta, \psi)$

Common lines (or angular reconstitution)

Summary:
" A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction

- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e., central section) will fix the relative Frank, J. (2006) 3D Electron Microscopy of Macromolecular Assemblies orientations of all three.

Common lines (or angular reconstitution)

Summary:

- A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction
- Two central sections will intersect along a line through the origin of the 3D Fourier transform
" With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e., central section) will fix the relative

(a)

(b)

(c)

Common lines (or angular reconstitution)

Summary:

- A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction
- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e., central section) will fix the relative orientations of all three.

Common lines (or angular reconstitution)

Summary:

- A central section through the 3D Fourier transform is the Fourier transform of the projection in that direction
- Two central sections will intersect along a line through the origin of the 3D Fourier transform
- With two central sections, there is still one degree of freedom to relate the orientations, but a third projection (i.e., central section) will fix the relative orientations of all three.

Common lines: Problems

- Noise can lead to incorrect angles
a Symmetry helps
- Handedness cannot be determined without additional information
a Tilting
a Secondary structure
a Metal shadowing
- Assumes conformational homogeneity

Outline

- 3D reconstruction
- Goal
- Requirements
- Reference-based alignment vs. ab initio reconstruction
- Different methods
- Common lines/angular reconstitution
- Random conical tilt
- VIPER

Random conical tilt: Determination of Euler angles

This scenario describes a worst case, when there is exactly one orientation in the 0° image. Since the in-plane angle varies, in the tilted image, we have different views available.

Random conical tilt: Geometry

Two images are taken: one at 0° and one tilted at an angle of 45°.

Radermacher, M., Wagenknecht, T., Verschoor, A. \& Frank, J. Three-dimensional reconstruction from a singleexposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146, 11336 (1987).

One problem though

We can't tilt the stage all the way to 90 degrees.

Random conical tilt: The missing cone

Representation of the distribution of views, if we display a plane perpendicular to each projection direction

The missing information, in the shape of a cone, elongates features in the direction of the cone's axis.

Random conical tilt: Filling the missing cone

If there are multiple preferred orientations, or if there is symmetry that fills the missing cone, you can cover all orientations.

Outline

- 3D reconstruction
- Goal
- Requirements
- Reference-based alignment vs. ab initio reconstruction
- Different methods
- Common lines/angular reconstitution
- Random conical tilt
- VIPER

Another method

How is a structure obtained from images of its 2D projections?

How to overcome a greedy algorithm: Stochastic Hill climbing

Image modified from Punjani et al. (2013) Nature Methods 14:290-296

B

Original concept: PRIME

Stochastic hill climbing: When things go awry

(4)	\& 6	Q	$\%$	\%	(8)	gr	\%8	\%	(2)	$\%$	48	(2)	8	8	
T	\&	88	8	\%	(4)	(4)	8	(9)	82	8	OR	9	\%	08	\%
(8)	(2)	08	St	(3)	\%	\%	8	8	¢	88	\%	Q	\%	(9)	8

In some nice cases

But sometimes...

Stochastic hill climbing meets genetic algorithm

What's a genetic algorithm?

An optimization technique inspired in natural selection.

1818 (1) Mer 8 3 \% (2)

Other methods

- Subtomogram averaging
- Orthogonal tilt reconstruction
- Stage is tilted to -45 and +45 degrees
- No missing cone
- Can work if even distribution of orientations
- Other software packages
- RANSAC from XMIPP

Suggestions

- Try different methods, different software packages
- VALIDATE!

