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CTF Estimation
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To estimate the error for the estimated 
parameters CTER does the estimation multiple 
times for random subsets of the tiles.



CTF Estimation
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Assumptions:
1. The main contributors to scattering are your macromolecules of interest.
2. The grid is flat, in the xy-plane.



CTF Estimation
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Reality:
1. Carbon, etc., will contribute to the power spectrum.
2. The grid is not flat.



CTF Estimation
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Solution:
 CTF refinement

 Probably won’t make a difference until beyond 4Å resolution



Should I worry?

• Accurate estimation of CTF parameters is very important.

– More later, in the refinement/reference-based alignment section…

• Is CTF refinement helpful?

– Yes, if you have tilted micrographs

– For high-resolution (beyond 4Å), it may help.

• Is reproducibility a problem?
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What might go wrong during picking

• Can you actually see the particles?

– Don’t blindly trust automatic pickers.

10



Case of HIV-1 envelope trimer
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Letter by Sriram Subramaniam (2013) PNAS

From Mao et al. (2013) From Harris et al. (2011)



What might go wrong during picking

• Can you actually see the particles?

– Don’t blindly trust automatic pickers.
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What might go wrong during picking

• Can you actually see the particles?

– Don’t blindly trust automatic pickers.

• If using template-based picking:

– Do the templates reflect all views of your particle?
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What might go wrong during picking

• Can you actually see the particles?

– Don’t blindly trust automatic pickers.

• If using template-based picking:

– Do the templates reflect all views of your particle?

• If picking manually:

– Are you subconsciously biasing your picks to recognizable views?

– One solution: Pick generously, and hope 2D classification picks out unexpected views.
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Specific for neural-network pickers

During training, does the network simply become good at matching the training picks?

• In which case, the network would fare poorly on any unseen data.
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Specific for neural-network pickers

During training, does the network simply become good at matching the training picks?

• In which case, the network would fare poorly on any unseen data.

Solutions:

• Augmentation – The training data are duplicated, with some modifications.

– Rotation, e.g., by multiples of 90 degrees

– Adding noise

– Random contrast changes

– Multiplication/addition/subtraction of pixel values

– Dropout – set random number of particles to the mean value
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Specific for neural-network pickers

During training, does the network simply become good at matching the training picks?

• In which case, the network would fare poorly on any unseen data.

Solutions:

• Augmentation – The training data are duplicated, with some modifications.

– Rotation, e.g., by multiples of 90 degrees

– Adding noise

– Random contrast changes

– Multiplication/addition/subtraction of pixel values

– Dropout – set random number of particles to the mean value

• Validation

– Some fraction of the training data (e.g., 20%) are set aside.

– Training is performed on the other 80%.

– The network is tested on the 20% validation set.
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2D classification: When is it used?

• Initial-model generation

• “Cleaning“ of data sets

– Removing non-particles

• First look at your macromolecule of interest

19



K-means clustering

Every image with N pixels 
can be considered a point in a 

N-dimensional coordinate system

The higher the similarity of 
a pair of images, the closer 
the representing points are.
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K-means clustering

K=3
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K=10

The real cryo-EM world is far too noisy for K-means
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100 particles
img_per_grp=10, 
minimum_grp_size=3

Expected K=10

Returned K=17

ISAC can handle the real cryo-EM world!
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Weaknesses of K-means

K-Means clustering is a good algorithm because it is simple and fast. 
However, it is not perfect…
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The number of clusters is a critical parameter and can affect results considerablyNeed to guess the
number of clusters K

Results dramatically depend on the initialization. The algorithm may be trapped in 
the local optimum  ➜ Model bias problem

Sensitive to initial 
condition

Not robust to outliers
Data points far from the centroid may pull the centroid away from the center - 
Weakness of arithmetic mean  Especially problematic for ➜ preferred orientations

Limited to circular 
clusters of similar size

K-means can hardly handle clusters of variable size/density



ISAC: Iterative Stable Alignment and Clustering

What can ISAC do better to overcome problems of K-means?
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Need to guess the
number of clusters K

Sensitive to initial 
condition

Not robust to outliers

Limited to circular 
clusters of similar size

Ask for number of images per group instead  ➜ Equal-Size K-means

Run 2D clustering multiple times starting from different initial conditions
  Keep ➜ reproducible classes only

Multiple 2D alignments within each cluster to identify heterogeneous clusters and 
outliers, which have high variation in alignment results  Keep ➜ stable classes only

Reject too small clusters typical for outliers and limit maximum size



2D classification: Take home messages

• 2D classification is useful.

• If it doesn‘t perform well, don’t be satisfied with it.
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What can go wrong? Handedness
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Handedness: You have a 50% chance of getting the right handedness from a VIPER run. It should not 
matter for further image processing.

From pre-calculated results
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In some nice cases But sometimes...

What can go wrong? Everything



 Images are noisy.
 With noise-free data, initial-model 

algorithms work great.
 Common lines are composed of a few 

hundred Fourier coefficients (~Fourier 
pixels).

 of which, maybe a few dozen have a good 
SNR

Why so bad?
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Reproducibility? Multivariate Statistical Analysis

Shaikh et al. (2008) Nature Protocols.
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Reproducibility? Tilt validation

0° 48°
Artificial data

described in Rosenthal & Henderson (2003) JMB
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Reproducibility? Tilt validation

Real data
Rosenthal & Henderson (2003) JMB



Initial models: Take home messages

• Run initial-model generation many times, or use a program that generates many models.

• Validate!

• Random conical?
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Reference-based alignment: Problems

• Reference bias
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Reference-based alignment: Bias
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N = 128 N = 256 N = 512

N = 1024 N = 2048 original



Reference bias: Solutions/defenses

• Internal reference-free alignment

– Like in IMAGIC (?), EMAN2
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Reference bias: Solutions/defenses

• Internal reference-free alignment

• “Gold” standard

– Henderson et al. (2012) “Outcome of the First Electron Microscopy Validation Task Force 
Meeting.” Structure

– Grigorieff (2000) “Resolution measurement in structures derived from single particles.“ Acta 
Cryst D 
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Reference-based alignment: “Gold” standard
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images

“odd” reconstruction

“even” reconstruction

+

OLD STRATEGY

merge & refine orientations
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refinement1 refinement2



Reference bias: Solutions/defenses

• Internal reference-free alignment

• Gold standard

• Omit/alter data in reference

– Shaikh et al (2003) “An approach to examining model dependence in EM reconstructions 
using cross-validation” JSB

– Chen… Henderson (2013) “High-resolution noise substitution to measure overfitting and 
validate resolution in 3D structure determination by single particle electron 
cryomicroscopy.” Ultramicroscopy
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Reference-based alignment: Free FSC
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Reference-based alignment: Weird FSC curves
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FSC=0.5

FSC=0.143



Possible causes

• Artifacts in reconstruction algorithm

• Particles accidentally duplicated in two half-sets

• Incorrect CTF estimation
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CTF-correction: Phase-flipping
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http://spider.wadsworth.org



Possible causes

• Artifacts in reconstruction algorithm

• Particles accidentally duplicated in two half-sets

• Incorrect CTF estimation

• Too tight masking

– Or other edges or sharp features in map
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Reference-based alignment: Masking
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Mask for refinement



At the microscope

 Are the microscope settings really what you think they are (e.g., magnification)?

 Calibration 

 Internal calibration standards, e.g., TMV



Before the microscope

 Is the sample really what you think it is?

 Run a gel!

 Are the conditions really “native-like”?

 Buffer conditions probably not physiological

 Concentration probably higher than in vivo

 Quaternary interactions: oligomerization state, binding partners

 Interactions with grid
 Air-water interface

 Carbon, gold, graphene



Thank you for your attention
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