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The alignment problem

Two 2D 1mages:

Three degrees of freedom:



Two 1mages are aligned if the least square discrepancy
between them 1s minimized:
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Two 1mages are aligned 1f the least square discrepancy
between them 1s minimized:

c(sx .S, ,a) — max

Maximum of the cross-correlation function

Valid only if if the noise is additive and white
(its power spectrum is straight horizontal line)!



CRYO-EM IMAGE FORMATION MODEL

G=CIF-F+N
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MATCHED FILTER

DETECTION OF A TEMPLATE IN A NOISY FIELD

G=CTF-F+N,
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MATCHED FILTER

DETECTION OF A TEMPLATE IN A NOISY FIELD

G=CTF-F+N, +CTF-M
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Two 1mages are aligned 1f the least square discrepancy
between them 1s minimized:

Maximum of the cross-correlation function

How to define the best alignment for n objects?



Alignment of n objects

\

/

The distances between all pairs of images have
to be minimized simultaneously.




Sum of distances between each 1image and sums
(average) of all remaining images.
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The three alignment criteria are equivalent:

1. Sum of all pairs-distances between 1images -> min

2. Sum of distances between each image and sums
(average) of all remaining images (variance) -> min

3. Squared norm of the sum of all images -> max



Sum of distances between all pairs of images.

n

.k k k
Effk(X’SX’Sy’a )_
k=1

where

n

<f> —n—Zf,(Xs s oc)

Sum of distances between each 1image and sums
(average) of all remaining images.

Suggests an alignment algorithm:
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Next few slides are cowur"resy of Steve Ludtke
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Reference bias in alignment of n images

P. Penczek, J. Frank ; 3D reconstruction of single particles embedded in ice / 1992

Fig. 2. Test of the reference-free alignment algorithm using model data. (a) Reference image used to test the standard alignment

procedure. (b) Example of onc of 128 64 X 64 test images containing Gaussian noise with the average equal to zero and variance

equal to one. (c) Average of the series of 128 noise images aligned by the standard procedure. (d) Average of the series of 129

images (including the reference of the first test) after using the “reference-free” alignment program, (¢) Modified version of the

random image (h): the hexagonal reference image is added with a weight such that the resulting SNR s 0.75. (D) Average of the

series of 128 modified noise images aligned by the standard procedure. (2) Average of the series of 129 modified images (including
the reference of the first test) after using the “reference-free™ alignment program.




ALIGNMENT SCHEME
REFERENCE BASED

Select/guess Final average

initial Set of alignment
reference parameters



ALIGNMENT SCHEME
REFERENCE-FREE

Randomize Final average

initial Set of alignment
parameters parameters



ALIGNMENT SCHEME
REFERENCE-FREE PROPER

Randomize Final average

inrtial Set of alignment

parameters parameters




2D MULTI-REFERENCE ALIGNMENT (MRA)

n images

MRA is equivalent to K-means
clustering, with the distance
between images defined as a
maximum similarity over the
permissible range of image
rotations and translations.




K-Means

The K-means method is by far the most popular clustering algorithm used in
scientific and industrial application.

K-means is both very simple and very fast, which makes it appealing in practice.

K-means begins with an arbitrary clustering based on K centers, and then
repeatedly makes local improvements until the clustering stabilizes.



K-Means

Algorithm: K-means

Input: & number of clusters
t number of iterations
data the data

Output: C a set of k clusters

cent = arbitrarily select k objects as initial centers
While(any d changed assignment) do

for each d in data do
assign label x to d such that dist(d, cent[x]) is minimized;

forx=1to kdo
cent[x] = average value of all data with label x;

Enddo
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1.

K-means

Ask user how many
clusters they'd like.
(e.g. K=5)

Randomly guess K
cluster Center locations
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1.

K-means

Ask user how many
clusters they'd like.
(e.g. K=5)

Randomly guess K
cluster Center locations

Each datapoint finds
out which Center it's
closest to. (Thus each
Center “owns” a set of
datapoints)

Auton’s Graphics
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— Auton’s Graphics [ _4”

K-means

1. Ask user how many
clusters they'd like.
(e.g. K=5)

0,8
2. Randomly guess k
cluster Center locations
3. Each datapoint finds e

out which Center it's
closest to.

4. Each Center finds the
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1.

K-means

Ask user how many
clusters they'd like.
(e.g. K=5)

Randomly guess k
cluster Center locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds the
centroid of the points it
OWnS...

...and jumps there

...Repeat until
terminated!
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K-means properties

+ Very simple algorithm

+ Works very well if groups are well separated and number of groups K
was guessed correctly

+ O(KNft) time complexity
+ Guaranteed to converge in a finite number of steps

+ In the SSE version, optimizes well-defined and intuitive notion of “natural
grouping” (i.e., within-group variance)



K-means properties

— Circular cluster shape only

— Not guaranteed to converge to a global minimum
— Finding global minimum not feasible in practice
— Outliers can have very negative impact

— If K not guessed correctly and/or groups are not well separated (i.e.,
almost always), the result dramatically depends on initialization.



2D MULTI-REFERENCE ALIGNMENT (MRA)

n images

MRA is equivalent to K-means
clustering, with the distance
between images defined as a
maximum similarity over the
permissible range of image
rotations and translations.

K-means results depend on the
solution to another nontrivial
problem: the alignment of a set of
2D images.

Because neither of these two
problems can be easily solved,
the difficulty is compounded.




K-MEANS CLUSTERING

. K-means group assignments
KNOWN PROPERTIES: minimum distance to a template within a row
M Very fast convergence guaranteed in a finite ai s n

number of steps
M@ Converges only to a local minimum

B Unclear how to determine the appropriate
number of classes (K)

All images must be assigned to an average

The solution (final averages) depends on the
initial set of averages, and will change if
clustering is repeated using different initial
averages

In EM, when alignment is added, classes tend to
collapse




EQK(EQUAL GROUP SIZE)_ MJEANS CLUSTERING

Assign n images to K classes
such that each class contains

images

EQK-means group assignments
minimum distance to all templates, maximum number per group=3




2D ALIGNMENT AND STABILITY

2D alignment is stable if perturbation of initial alignment parameters does

not produce dramatically different results.

’ T

1 . Ifasetofimagesis homogeneous, the result

from reference-free alignment is stable even for
very low SNR data.

2 . The converse is true, i.e., if a set of images is stable,
it must be homogeneous.

Assuming 1 and 2 are correct:
If we can find homogeneous subsets of

images, we can solve the multi-reference
alignment problem.




STABLE VS. UNSTABLE CLASSES: A TEST CASE

B Two groups were mixed 50-50, their respective
averages are:
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STABLE VS. UNSTABLE CLASSES: TEST RESULTS
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A PROTOCOL FOR TESTING ALIGNMENT STABILITY

1 e Run reference-free alignment L-times,
using randomized initial orientation
parameters

SAC

n 2D images

K initial class averages

!

EQK-means MRA

> K classes
n/K images per class
2 e Bring all L sets of solutions into . . Tt TI Tl
g . 9. .0 _.Q . Iwl Iwl I |
register by simultaneous minimization of 1] 21| | Lunsofabinio 3] 4! . Ik
. - s | i ;
the variance of orientation parameters R i "'asia"g"'“e"‘ B
.. . - 1 [ l [ [
(similar but not equivalent to alignment | 1| Lo
) I L1 Stability - : [
of resulting averages) - - i Sl I B B
\ |
R ~ R
3 & B B
. . 1 | )
e Compute pixel error for each image B N : k::ntlfybl R
. . . ssn/K stable
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9ng . |
positions it adopted e e e b
. . Generate K’ <K
4 e The set is called stable if the average stable averages
of pixel errors for all images in L l
alignments is less than a predefined
i A
threshold (usually one pixel). —a verages o Return

unstable classes

K’<K stable averages )
.betw.een and class assignments -
iterations




REPRODUCIBILITY

B Since EQK-means, even if combined with an alighnment stability test, does not
guarantee an optimum solution (global minimum) and stable groups can be fake,
we require the solution to be reproducible over a number of quasi-independent
runs.

B  We have m=4 EQK-means runs analyzing the data in parallel. Once all runs produce
their respective averages, we compare assignments of images to class averages and
select as reproducible subsets shared among quasi-independent runs.

Set Final Set
2 3




MULTIPLE ASSIGNMENT PROBLEM

B For matching two sets of assignments, the solution is given in polynomial time by the
Hungarian algorithm

B We developed a branching algorithm for matching m sets of assighments, that finds a nearly
optimal solution in a reasonable time
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ISAC: ITERATIVE STABLE ALIGNMENT AND CLUSTERING

ISAC

n 2D images
We use 4 CPU groups to analyze the data set Kinitial class averages

m=2

simultaneously l

Broadcast

m !rreproducible averages are eliminated > data and averages
. to 4 CPU groups

K=K stable SAC K,<K stable SAC K;<K stable SAC K,<K stable SAC
averages averages averages averages

and class and class and class and class
assignments assignments assignments assignments

N A 4 Y A 4

!

Test reproducibility
by m-way matching
of 4 average sets

&

_ Re-seed KK’ No m=4 %
irreproducible classes| m:=m+1 "

Yes

Return
K’<K reproducible and
stable averages



ISAC...

... is a very mysterious and powerful algorithm
whose mystery is exceeded only by its power.
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CONCLUSIONS

1 «ISAC is a simple and intuitive approach (no equations!)
based on concepts of stability and reproducibility.

2 «ISAC operates exclusively on parameters and labels, not on
image similarities as these are unreliable.

3 «ISAC objectively generates reliable, validated 2D averages.
4.ISAC requires a minimal number of parameters:

= Desirable number of images per group

= Number of re-alignments L for the stability tests in SAC.

5 « Reproducibility and stability test result in a relatively long
computation time.
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