Geometric Algorithms for De Novo Modeling

Sasakthi Abeysinghe¹ · Stephen Schuh¹
Austin Abrams¹ · Tao Ju¹
Matthew Baker² · Wah Chiu²

1. Washington University in St. Louis
2. Baylor College of Medicine

www.cs.wustl.edu/~taoju/research/modeling2010_tao.ppt

Geometric Problems

- Shape analysis of density maps
 - Tubular vs. plate-like regions

- Topology analysis of SSEs
 - Based on cryo-EM and primary sequence

- Flexible model fitting
 - Guided by SSEs
Geometric Algorithms

• Shape analysis of density maps
 • Skeletonization

• Topology analysis of SSEs
 • Graph matching

• Flexible model fitting
 • Shape registration

Geometric Algorithms

• Shape analysis of density maps
 • Skeletonization

• Topology analysis of SSEs
 • Graph matching

• Flexible model fitting
 • Shape registration
Skeleton-based Shape Analysis

Geometric Algorithms in De Novo Modeling

Cryo-EM Volume Protein Structure

Plate
Tube
β-sheet
α-helix

Hybrid Skeleton

Surface

Protein Structure

Cryo-EM Volume
Computing Hybrid Skeletons

- Hybrid Skeletons
 - Made up of curves and surfaces
 - Located at tubular and plate-like parts of the shape
 - Robust to noise

- Three Algorithms
 - For binary volumes: “Computing a family of skeletons of volumetric models for shape description”, Ju et al., Computer-Aided Design 2007
 - For grayscale volumes: “Segmentation-free skeletonization of grayscale volumes for shape understanding”, Abeyesinghe et al., IEEE SMI 2008
 - Interactive sketching: “Interactive skeletonization of intensity volumes”, Abeyesinghe et al., The visual computer 2009

Algorithm 1: skeletons from Binary Volumes

- Alternated thinning and pruning

 ![Diagram of Algorithm 1](image)

 - Thinning
 - Pruning

Stage 1
Algorithm 1: skeletons from Binary Volumes

- Alternated thinning and pruning

Stage 2

Thinning

Pruning

Curve skeleton
(with salient surfaces)

Salient curves and surfaces
(Hybrid skeleton)

Results

Cryo-EM scans

Thinning

Our method

Protein structure
Algorithm 2: Skeletons from Grayscale Volumes

- Binary algorithms that work on thresholded volumes are sensitive to the choice of thresholds

![Raw Cryo-EM Volume]

- Observations
 - Skeletons lie close to local maxima of grayscale intensity
 - Intensity around the skeleton varies most in directions orthogonal to the skeleton
 - Curve: intensity varies most on a plane
 - Surface: intensity varies most in a line

![Skeleton curve]
![Skeleton surface]
Algorithm 2: Skeletons from Grayscale Volumes

- Combine skeletons at various thresholds and prune using grayscale directionality
 - Directionality analysis: structure tensor
 - Eigenvectors and eigenvalues give principle directions and amount of intensity variation

\[
T_p' = \sum \theta_p T_p
\]

\[
T_p' = \begin{bmatrix}
I_x \\
I_y \\
I_z
\end{bmatrix} \times \begin{bmatrix}
I_x' \\
I_y' \\
I_z'
\end{bmatrix} = \begin{bmatrix}
I_x^2 & I_x I_y & I_x I_z \\
I_y I_x & I_y^2 & I_y I_z \\
I_z I_x & I_z I_y & I_z^2
\end{bmatrix}
\]
Results

CryoEM scans
Hybrid skeletons
Protein structure

Geometric Algorithms in De Novo Modeling

Algorithm 3: Interactive Skeleton Sketching

- Click-and-drag interaction in 3D
 - Suited for noisy and ambiguous density data

End-point clicking:

Scribbling:
Geometric Algorithms

- Shape analysis of density maps
 - Skeletonization

- Topology analysis of SSEs
 - Graph matching

- Flexible model fitting
 - Shape registration

Objective

- Input:
 - Sequence with predicted helices and strands
 - Skeleton with observed helices and sheets

- Problem:
 - Find a connected path of helices and sheets that best matches the sequence
Method

- **Graph matching**
 - Represent sequence and cryo-EM as graphs
 - Encoding connectivity of SSEs
 - Compute the best-matching sub-graph
 - Match scored by SSE similarity

 - Helix + Sheet matching: Schuh et al., in preparation (functionality already in Gorgon V2.0)

Sequence as Graph

- **Nodes**: 2 per helix (green), 1 per strand (blue)
- **Edges**: Connect adjacent nodes

Annotated Sequence: SSVFVPDEWVSRE*TLL*ECGGSFG*YEGFRDQ*KGEAETRVAV*TVNESSALPERTEFLEASW*KGFTC...
Skeleton as Graph

- Nodes: 2 per helix (green), 1 per sheet (blue)
- Edges: Paths along skeleton connecting nodes

Graph Matching

- A* search algorithm
- Sheet nodes (blue) in skeleton can be visited more than once
- Modify graph structure to handle noise
 - Missing helices and sheets
 - Missing loops in skeleton
 - Broken sheets
- Now available in Gorgon: http://cs.wustl.edu/~ssa1/gorgon
Results: 1IRK (simulated data)

- Executed in 0.45 seconds
- 100% correct helix correspondence
- 60% correct strand correspondence (one missing sheet)

Results: 1TIM (simulated data)

- Executed in 2.8 seconds
- 1 user-specified constraint
- 100% correct helix and strand correspondence
Geometric Algorithms

- Shape analysis of density maps
 - Skeletonization
- Topology analysis of SSEs
 - Graph matching
- Flexible model fitting
 - Shape registration

Objective

- Input:
 - Cryo EM density of a molecule
 - High-resolution structure of a similar molecule (can be at a different conformation)
- Problem:
 - Fit the high-resolution structure into the density while allowing for non-rigid deformations
Observation #1

- In different conformations or in similar molecules, corresponding helices are often similar in shape

1OEL - A (red) and 1SS8 - A (blue)

Observation #2

- Groups of helices often deform rigidly (but deformation may differ among groups)

1OEL - A (thin cylinders) and 2C7C - A (thick cylinders)
Method: Coarse-to-fine, Helix-driven Fitting

1. Semi-rigid mapping of Helices
2. Elastic deformation of loops/strands
3. Energy minimization

Preliminary Results: Helix Mapping

- **3E8K (Chain A)** - 7 Helices
- **2GP1 (Chain A)** - 9 Helices

Executed in 0.1s
Preliminary Results: Helix Mapping

- 1OEL (Chain A) - 20 Helices
- 1SS8 (Chain A) - 20 Helices

Executed in 0.2s

- 1OEL (Chain A) - 20 Helices
- 2C7C (Chain A) - 21 Helices

Executed in 0.3s
Preliminary Results: Helix Mapping

- 3E8K - 71 Helices
- 2GP1 - 71 Helices

Executed in 84s
Summary

• Shape analysis of density maps
 • Skeletonization

• Topology analysis of SSEs
 • Graph matching

• Flexible model fitting
 • Shape registration