NCMI Workshop on Single Particle Processing and Visualization - 2007

Thanks to our Sponsors:
Agouron Institute
TLC², University of Houston
National Center for Research Resources
National Institute of General Medical Sciences
JEOL, Inc.

Steve Ludtke
sludtke@bcm.edu
Announcements

• If you have a dot, you have a spot in the teaching classroom
• For cab rides back to the airport, there is a signup sheet at the registration desk
• Daily Agenda
LAPTOP USERS

• Dot on your badge if you will have a desktop in the afternoon

• Copy the entire DVD to your linux/OSX partition
• After copying, make sure permissions are set:
 • chmod –R u+w *demo
• Check software installation:
 • cd eman-demo/samples
 • v2 imagic.hed
Workshop Materials

• Note that all workshop materials, including final versions of presentations will be archived at:
 http://ncmi.bcm.edu/ncmi/events/workshops/workshops_66

• Use the new EMAN/EMAN2 Wiki for questions:
 http://blake.bcm.edu/emanwiki
 - make an account for yourself
 - subscribe to the page to be notified when there is an answer
Topics

• Single Particle Reconstruction
 – EMAN, EMAN2 (Steve Ludtke), SPARX (Pawel Penczek)

• Visualization
 – Chimera (Tom Ferrin & Tom Goddard), MGLTools/Vision (Yong Zhao)

• Map Interpretation
 – AIRS (Matt Baker)

• Homology Modeling
 – Modeller (Ben Webb & Maya Topf)

• Theory & Background (Wah Chiu, Pawel Penczek, Kim Henrick, Mike Schmid, Mike Marsh, Ian Rees)
Recommended Computer
(Jan 2007)

- Core 2 duo
- 2-4 gigs memory
- 250+ gig SATA hard drive
- Good NVidia or ATI graphics card
 - Most expensive models don’t help isosurface rendering much
 - ‘industrial’ cards, like quadro, support stereo in a window, but otherwise the same
- Dual monitor solutions can be very useful
Processor Comparison

Relative Performance (speedtest):
• 180 - SGI Octane R10k 0.25 Ghz
• 400 - PIII 0.8 Ghz
• 1000 - P4/Xeon(old) 3.2 Ghz
• 1800 - Athlon64 3500 2.2 Ghz
• 3400 - Core 2 duo 2.6 Ghz

All numbers are per-core
Athlon64 ~ Opteron at the same speed
Core 2 duo ~ New Xeon at same speed
Trivial unit definitions:

- 1 Angstrom = 1 Å = 0.1 nm ~ size of an atom
- <3 Å resolution required in x-ray crystallography for a backbone trace
- In SPA, defocus usually specified in μm, 1 μm = 10,000 Å
- Rule of thumb for SPA → 3x oversampling, ie – to achieve 3 Å resolution, you need 1 Å/pixel
Requirements for Single Particle Analysis

• Soluble, monodisperse
• ~20 μl @ 0.1 – 1 mg/ml (makes ~4 grids)
• Bigger is better (>150 kDa)
• High purity 95%+, 99% is better
• Buffer is important (eliminate glycerol!)
• In theory, 1 grid+1 day → <1nm resolution
 – In practice …
Canonical SPA in EMAN

- Image Acquisition
- Particle Picking
- 2-D Analysis
- Symmetry/Low Resolution Model
- Determine CTF Parameters
- High Resolution Refinement
- Post-processing
- Dynamics Analysis
Canonical SPA in EMAN

- Image Acquisition
- Particle Picking
- 2-D Analysis
- Symmetry/Low Resolution Model
- Determine CTF Parameters
- High Resolution Refinement
- Post-processing
- Dynamics Analysis

Publish ?
Image Acquisition

• Pick your defocus range
 – Envelope function related to defocus even on modern FEG scopes
 – As close to focus as possible while still able to locate the particles → +1 μm, random values (for EMAN)
 – Focal Pairs ?

• CCD
 – Adequate sampling. For low symmetry, 2/5 Nyquist is a good rule of thumb (res=5*A/pix)

• Film
 – Scanner is important. Bit depth less important than scanner envelope function (e2scannereval.py)
Image Acquisition

• Avoid continuous carbon substrate
 – Decreases contrast
 – Difficult to separate c-film CTF from specimen
 – Makes CTF correction difficult
Particle Picking

• boxer, batchboxer, helixboxer, e2boxer.py
• Outside software?
• manual or semi-automated process
• False positives are very dangerous, but also beware of excluding views you weren’t expecting
• Mixing microscopes possible, but rarely worthwhile (tomorrow)
2-D Analysis

• Even if you know the quaternary structure, still worthwhile. May be surprises.
• At least 1000-2000 particles with uniform orientation distribution, perhaps fewer if symmetry or preferred orientation
• Look for dynamics or degradation
• ‘shrink’ particles for speed
• # classes ≤ # particles/20
• refine2d.py not startnrclasses
refine2d.py

Particles
refine2d.py

Particles

startnrclasses
refine2d.py

Particles

startnrclasses

Align Particles
refine2d.py

Particles

class

Align Particles

SVD/PCA
refine2d.py

Particles

startnrclasses

Align Particles

SVD/PCA

k-means classification in SVD subspace
Particles

refine2d.py

startnrclasses

Align Particles

SVD/PCA

k-means classification in SVD subspace
refine2d.py

Particles

Align

Particles

SVD/PCA

k-means

classification in

SVD subspace
refine2d.py

Particles

Align
Particles

SVD/PCA

k-means classification in SVD subspace

After 9 iterations
Symmetry / Initial Model

• May be obvious from 2-D refinement
• Double-check with quick 3-D refinements from class-averages → also gives starting model
• If still ambiguous, may need better data or tomography
• Starting models need not be very good. General shape/size is sufficient.
• Compare projections and class-averages. Must agree!
CTF Determination
(current EMAN correction scheme)

• (tomorrow!)
• Focus on high resolution more than low resolution. Significant mismatches can be tolerated at low resolution.
• B-factors and amp-contrast should be fairly constant, unless the data clearly justifies a difference.
• Fewer particles \rightarrow noisier power spectra \rightarrow overestimating B-factor
• Use ctfcw=, not ctfc=
High Resolution Refinement

- Most efficient to move stepwise, not jump straight from 20 Å → 5 Å.
- Beware of over-refinement / model bias
- classiter=0 and setsf= dangerous, especially together
- Resolution ≠ Resolvability!
- Masking ~ solvent flattening, helps a lot
Initial 3D Model

Particle Images

Uniform Projections

Classify Particles

Build New 3-D Model

Align and Average Classes

Final 3D Model
Initial 3D Model

Particle Images

Uniform Projections

Classify Particles

Build New 3-D Model

Align and Average Classes

Final 3D Model
Initial 3D Model → Uniform Projections → Build New 3-D Model → Final 3D Model

Particle Images → Classify Particles → Align and Average Classes
Initial 3D Model

Particle Images

Uniform Projections

Classify Particles

Align and Average Classes

Build New 3-D Model

Final 3D Model
Initial 3D Model → Uniform Projections → Classify Particles → Align and Average Classes → Build New 3-D Model → Final 3D Model
Refine from Gaussian Ellipsoid
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Postprocessing

• 10 – 20 Å
 – Xtal structures / homology modeling of components (foldhunter)

• 5 – 10 Å
 – Secondary structure analysis (ssehunter)

• < 5 Å
 – Backbone tracing, atomistic models (multiple tools)
Dynamics

- Look at refine2d.py results in the context of your high resolution model
- ‘bootstrapping’ method to identify flexibility/heterogeneity
- Use multirefine to generate multiple structures from 1 heterogeneous data set
Dynamics
(refine2d.py)

- Refine2d.py with a small number of classes
- Refine2d.py again on particles from a single view
- e2stacksort.py
- e2stackanim.py
EMAN Multireference Refinement

3D Model → Projections → 3D Model
3D Model → Projections → 3D Model
3D Model → Projections → 3D Model
Particles → Classify Particles → Class Avg.
Class Avg. → Class Avg.
Class Avg. → Class Avg.
SR398+GroES+Mg-ATP

Top View

Side View

Side View of Half Map

Central Slice of Side View

SR398 heptamer with no GroES Standard Conformation Expanded Conformation
Acknowledgements

GroEL
- Donghua Chen
- Matt Baker
- David Chuang (UTSW)
- Jiu-Li Song (UTSW)
- Wah Chiu

Research supported by the NCRR and NIGMS

Graphics produced using Chimera (CGL at UCSF) (supported by NIH P41 RR-01081) and EMANimator.