Differences between revisions 22 and 141 (spanning 119 versions)
Revision 22 as of 2009-07-14 22:00:38
Size: 1435
Editor: root
Comment:
Revision 141 as of 2017-06-19 11:47:27
Size: 5928
Editor: SteveLudtke
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
== EMAN2 alpha ==
Note that EMAN2 is still in alpha-testing. It can do some useful things, but is not completely stable yet.
= EMAN2.2 =
Most of the pages are editable by any user that has registered an account on the server. To prevent spam, you need to email sludtke@bcm.edu to get an account on the system if you wish to contribute changes. If you just wish to browse, you don't need an account.
Line 4: Line 4:
 * [[EMAN2/Install|Installation Instructions and Tips]] EMAN2 is the successor to [[EMAN1]]. It is a broadly based greyscale scientific image processing suite with a primary focus on processing data from transmission electron microscopes. EMAN's original purpose was performing single particle reconstructions (3-D volumetric models from 2-D cryo-EM images) at the highest possible resolution, but the suite now also offers support for single particle cryo-ET, and tools useful in many other subdisciplines such as helical reconstruction, 2-D crystallography and whole-cell tomography. EMAN2 is capable of processing very large data sets (>100,000 particle) very efficiently.

Please also note that this is '''not''' the (related) [[EMEN2]] electronic notebook, but is EMAN2, a scientific image processing suite.

=== Please Cite ===
EMAN is free software, supported by NIH Grants. It is critical that you cite EMAN2 when you use it in a publication in any significant way, to help us document usage when trying to renew our funding. Feel free to cite any of these:

 * '''Primary EMAN2 paper:'''
  * G. Tang, L. Peng, P.R. Baldwin, D.S. Mann, W. Jiang, I. Rees & S.J. Ludtke. (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 157, 38-46. PMID: 16859925
 * '''EMAN2 high resolution refinement methods:'''
  * J.M. Bell, M. Chen, P.R. Baldwin & S.J. Ludtke. (2016) High Resolution Single Particle Refinement in EMAN2.1. Methods. 100, 25-34. PMC4848122
 * '''Methods for analysis of conformational and compositional variability:'''
  * Ludtke, S. J. "Single-Particle Refinement and Variability Analysis in EMAN2.1." in Methods Enzymol 579159-189 (Elsevier, United States, 2016). PMC5101015
 * '''Methods for subtomogram averaging:'''
  * J.G. Galaz-Montoya, C.W. Hecksel, P.R. Baldwin, E. Wang, S.C. Weaver, M.F. Schmid, S.J. Ludtke & W. Chiu. (2016) Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. J Struct Biol. 194, 383-394. PMC4846534

== Download EMAN2 ==
 * [[EMAN2/Eman22Release|EMAN2.2 Release Notes]]
 * [[http://ncmi.bcm.tmc.edu/ncmi/software/software_details?selected_software=counter_222|Download EMAN2]] (binaries)
 * [[https://github.com/cryoem/eman2|Download EMAN2]] (source code)

== Install EMAN2 ==
 * [[EMAN2/Install|Installation Guides]] (binary and source)
 * [[EMAN2/Remote|EMAN2 Remote GUI use (for clusters and remote workstations)]]

== Get Help ==
We prefer to provide assistance via the Google group below, since this archives all discussions and makes them searchable. You must join the group to post, but can browse old content anonymously. You are also welcome to email sludtke@bcm.edu directly if you have questions you prefer not to post publicly, or are located someplace where Google is not available.

 * http://groups.google.com/group/eman2 (Main discussion list for EMAN2)
 * http://groups.google.com/group/eman2-developers (Discussions among developers, likely less interesting for users)
 * [[EMAN2/FAQ|FAQ]] - Please ask your questions in the Google Group which has a searchable archive. This page is somewhat out of date

== Documentation ==
 * Tutorials
  * [[https://www.youtube.com/c/SteveLudtke|YouTube Tutorials]] (Archived video tutorials and mini-tutorials)
  * [[EMAN2/Tutorials|Tutorials]] (Full PDF tutorials with data covering many different tasks)
Line 6: Line 41:
  * [[EMAN2/Workshop|EMAN2 Workshop Tutorial]]
  * [[EMAN2/Tutorials|EMAN2 Tutorials]]
  * [[EMAN2/Programs|Individual Programs]]
  * [[EMAN2/Concepts|Concepts and Conventions in EMAN2]]
  * [[EMAN2/Parallel|Parallel Computing (multiple cores, linux clusters, sets of workstations)]]
  * [[EMAN2/DirectoryStructure|File Descriptions]] (Folders and files in an EMAN2 Project)
  * [[EMAN2/Concepts|Standards]] (File Formats, Symmetry, Box Size, etc.)
  * [[EMAN2/Programs|Programs]] (Individual Program Documentation)
  * [[EMAN2/Parallel|Clusters]] (Running EMAN2 on clusters and multi-core workstations)
  * [[EMAN2/Gpu|GPGPU Computing]] (use the graphics processor for image processing)
Line 12: Line 47:
 * Advanced Users & Programmers
  * [[EMAN2/Library|Python/C++ Programmers Documentation]]
 * [[EMAN2/FAQ|FAQ - Ask your questions here]]
  * [[EMAN2/Eman1Transition|EMAN1 -> EMAN2 Transition Guide]]
  * [[EMAN2/Obsolete|Old Docs]] (Out of date documentation)
Line 16: Line 50:
==== About EMAN2 ====
EMAN2 is now almost a complete replacement for EMAN1. However, it was designed so both EMAN1 and EMAN2 can be installed in the same user account with no conflicts, in case you need some EMAN1 functionality. All EMAN2 programs, including GUI programs are written in the easy-to-learn Python scripting language. This permits knowledgable end-users to customize any of the code with unprecendented ease. If you aren't an advanced user, you can still make use of all of EMAN2's command-line programs, all of which start with 'e2'. Any programs in EMAN2 with an EMAN1 equivalent are likely substantially improved over their EMAN1 equivalents. For example e2pdb2mrc.py is ~10x faster than the EMAN1 pdb2mrc.
== Advanced Users & Programmers (Python) ==
 * [[EMAN2/GitTutorials|GitHub (Transitioning from CVS to Git)]]
 * [[EMAN2/Library|Python/C++ Programmers Documentation]]
 * [[http://blake.grid.bcm.edu/eman2/doxygen_html/classEMAN_1_1EMData.html|Direct link to docs for EMData (image) class]]
 * [[http://blake.grid.bcm.edu/eman2/doxygen_html/classEMAN_1_1Transform.html|Direct link to docs for Transform (orientation/Euler angle) class]]
Line 19: Line 56:
== About EMAN2 ==
EMAN2 is the successor to [[EMAN1]]. It is a broadly based greyscale scientific image processing suite with a primary focus on processing data from transmission electron microscopes. EMAN's original purpose was performing single particle reconstructions (3-D volumetric models from 2-D cryo-EM images) at the highest possible resolution, but the suite now also offers support for single particle cryo-ET, and tools useful in many other subdisciplines such as helical reconstruction, 2-D crystallography and whole-cell tomography. Image processing in a suite like EMAN differs from consumer image processing packages like Photoshop in that pixels in images are represented as floating-point numbers rather than small (8-16 bit) integers. In addition, image compression is avoided entirely, and there is a focus on quantitative analysis rather than qualitative image display.

All EMAN2 programs, including GUI programs, are written in the easy-to-learn Python scripting language. This permits knowledgeable end-users to customize any of the code with unprecedented ease. If you aren't an advanced user, you can still make use of the integrated GUI and all of EMAN2's command-line programs.

EMAN2.2

Most of the pages are editable by any user that has registered an account on the server. To prevent spam, you need to email sludtke@bcm.edu to get an account on the system if you wish to contribute changes. If you just wish to browse, you don't need an account.

EMAN2 is the successor to EMAN1. It is a broadly based greyscale scientific image processing suite with a primary focus on processing data from transmission electron microscopes. EMAN's original purpose was performing single particle reconstructions (3-D volumetric models from 2-D cryo-EM images) at the highest possible resolution, but the suite now also offers support for single particle cryo-ET, and tools useful in many other subdisciplines such as helical reconstruction, 2-D crystallography and whole-cell tomography. EMAN2 is capable of processing very large data sets (>100,000 particle) very efficiently.

Please also note that this is not the (related) EMEN2 electronic notebook, but is EMAN2, a scientific image processing suite.

Please Cite

EMAN is free software, supported by NIH Grants. It is critical that you cite EMAN2 when you use it in a publication in any significant way, to help us document usage when trying to renew our funding. Feel free to cite any of these:

  • Primary EMAN2 paper:

    • G. Tang, L. Peng, P.R. Baldwin, D.S. Mann, W. Jiang, I. Rees & S.J. Ludtke. (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 157, 38-46. PMID: 16859925

  • EMAN2 high resolution refinement methods:

    • J.M. Bell, M. Chen, P.R. Baldwin & S.J. Ludtke. (2016) High Resolution Single Particle Refinement in EMAN2.1. Methods. 100, 25-34. PMC4848122

  • Methods for analysis of conformational and compositional variability:

    • Ludtke, S. J. "Single-Particle Refinement and Variability Analysis in EMAN2.1." in Methods Enzymol 579159-189 (Elsevier, United States, 2016). PMC5101015
  • Methods for subtomogram averaging:

    • J.G. Galaz-Montoya, C.W. Hecksel, P.R. Baldwin, E. Wang, S.C. Weaver, M.F. Schmid, S.J. Ludtke & W. Chiu. (2016) Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. J Struct Biol. 194, 383-394. PMC4846534

Download EMAN2

Install EMAN2

Get Help

We prefer to provide assistance via the Google group below, since this archives all discussions and makes them searchable. You must join the group to post, but can browse old content anonymously. You are also welcome to email sludtke@bcm.edu directly if you have questions you prefer not to post publicly, or are located someplace where Google is not available.

Documentation

Advanced Users & Programmers (Python)

About EMAN2

EMAN2 is the successor to EMAN1. It is a broadly based greyscale scientific image processing suite with a primary focus on processing data from transmission electron microscopes. EMAN's original purpose was performing single particle reconstructions (3-D volumetric models from 2-D cryo-EM images) at the highest possible resolution, but the suite now also offers support for single particle cryo-ET, and tools useful in many other subdisciplines such as helical reconstruction, 2-D crystallography and whole-cell tomography. Image processing in a suite like EMAN differs from consumer image processing packages like Photoshop in that pixels in images are represented as floating-point numbers rather than small (8-16 bit) integers. In addition, image compression is avoided entirely, and there is a focus on quantitative analysis rather than qualitative image display.

All EMAN2 programs, including GUI programs, are written in the easy-to-learn Python scripting language. This permits knowledgeable end-users to customize any of the code with unprecedented ease. If you aren't an advanced user, you can still make use of the integrated GUI and all of EMAN2's command-line programs.

idea_5_c.png

EMAN2 (last edited 2025-01-16 14:24:37 by SteveLudtke)