Size: 1486
Comment:
|
Size: 3354
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
== Single Particle Tomography in EMAN2 == === Wed PM Practical === |
= Single Particle Tomography in EMAN2 = == Wednesday - P.M. == |
Line 4: | Line 4: |
SPT (single particle tomography) capabilities are relatively new in EMAN2. They were inspired by Michael Schmid's studies on sub-volume averaging (mostly on viruses), and a stubborn student insisting on doing extensive sub-volume averaging on chaperons. | This session will cover the new tools for single particle tomography in EMAN2. Unfortunately, this technique is very memory-intensive and compute-intensive. The 3 gb of ram available on the workshop computers is barely sufficient to do some small examples, and full 3-D alignments of large sets of particles can take many hours of computation. |
Line 6: | Line 8: |
This session will cover the beta version of a small fraction of the SPT capabilities EMAN2 will eventually make available. | So, for purposes of the tutorial, we will learn how to use the particle picker, and do a couple of small examples which can be completed in the available time. |
Line 8: | Line 11: |
The session will cover: | == DATA == [[attachment:e2spt_data.zip| e2spt_data.zip|&do=get]] |
Line 10: | Line 14: |
1) SPT processing through EMAN2's workflow: e2workflow.py | == TUTORIAL DOCUMENT == Not available here for now. Get it through this site: |
Line 12: | Line 17: |
2) Sub-volume extraction from tomograms using e2tomoboxer.py | http://blake.bcm.edu/emanwiki/Ws2011/Agenda |
Line 14: | Line 19: |
3) "Preparation" of extracted particles for alignment (for a myriad of reasons, it is NOT recommendable to align and average sub-volumes directly after extraction). | == Monstrous command for alignment with e2spt_classaverage.py (used to be e2classaverage3d.py) == |
Line 16: | Line 21: |
4) Reference based alignment and averaging | e2spt_classaverage.py --input=e15pp_set1_stack.hdf --output=e15pp_set1_aligned.hdf --ref=e15ref_prep_icos_bin2.hdf --npeakstorefine=1 -v 3 --mask=mask.sharp:outer_radius=48 --preprocess=filter.lowpass.gauss:cutoff_freq=.02 --align=rotate_translate_3d:search=10:delta=8:dphi=8:verbose=1:sym=icos --parallel=thread:2 --ralign=refine_3d_grid:delta=3:range=9:search=2 --averager=mean.tomo --aligncmp=ccc.tomo --raligncmp=ccc.tomo --shrink=3 --shrinkrefine=3 --savesteps --saveali --iter=8 --normproc=normalize --sym=c1 --keep=0.8 --path=whatever_folder_I_want |
Line 18: | Line 23: |
All necessary software is provided as part of EMAN2. If you don't have EMAN2 installed, you can download the most updated version (for your specific platform, Windows, Linux or Mac), from here: http://ncmi.bcm.edu/ncmi/software/counter_222/software_86 |
|
Line 21: | Line 24: |
We have prepared sample data for this tutorial. The tomogram in the link below comes from a tilt series of epsilon15 virus particles in vitro, recorded using Zernike phase-plate technology: |
|
Line 24: | Line 25: |
[[attachment:e15phaseplate.rec]] | == Monstrous command for alignment with e2spt_hac.py (used to be e2tomoallvsall.py) == |
Line 26: | Line 27: |
The following tomogram also comes from a tilt series of epsilon15 viruses in vitro but was recorded under conventional cryoEM imaging conditions: | e2spt_hac.py -v 1 --path=AVSAs087 --input=CENTEREDvsD8aliVSapo_s087.hdf --shrink=3 --shrinkrefine=2 --iter=87 --mask=mask.sharp:outer_radius=36 --npeakstorefine=16 --preprocess=filter.lowpass.gauss:cutoff_freq=.02:apix=4.401 --align=rotate_translate_3d:search=4:dphi=12:delta=12 --parallel=thread:24 --ralign=refine_3d_grid:delta=3:range=12:search=2 --averager=mean.tomo --aligncmp=ccc.tomo --raligncmp=ccc.tomo --saveali --savesteps -v 2 --postprocess=filter.lowpass.gauss:cutoff_freq=.02:apix=4.401 --autocenter --exclusive_class_min=8 --normproc=normalize |
Line 28: | Line 29: |
[[attachment:e15normal.rec]] | == Not so monstrous command for e2spt_simulation.py (used to be e2tomosim.py) == e2spt_simulation.py --input=../groRef_scaled_bin2.hdf --snr=5 --nptcls=2 --tiltstep=5 --tiltrange=60 --transrange=10 --saveprjs --noiseproc=math.addnoise == Semi monstrous command for e2spt_resolutionplot.py == e2spt_resolutionplot.py --vol1=half1avg.hdf --vol2=half2avg.hdf --output=whatever3.txt --npeakstorefine=1 --verbose=3 --shrink=3 --shrinkrefine=2 --mask=mask.sharp:outer_radius=36 --preprocess=filter.lowpass.gauss:cutoff_freq=.02:apix=4.401 --align=rotate_translate_3d:search=4:dphi=30:delta=30:sym=icos --parallel=thread:8 --ralign=refine_3d_grid:delta=15:range=30:search=2 --aligncmp=ccc.tomo --raligncmp=ccc.tomo --postprocess=filter.lowpass.gauss:cutoff_freq=.02:apix=4.401 --normproc=normalize --sym=icos == Decent command for e2spt_rotationalplot.py == e2spt_rotationalplot.py --input=initModel.hdf --output=toAs129avsaAVG.txt --daz=1 --shrink=1 --dalt=180 --mask=mask.sharp:outer_radius=28 == Command for e2spt_radialdensityplot.py == e2spt_radialdensityplot.py --vols=volA_aligned.hdf,volB_aligned.hdf --normproc=normalize.edgemean --lowpass=filter.lowpass.gauss:cutoff_freq=0.02:apix=4.401 --singleplot --output=volAali_VS_volBali.png |
Single Particle Tomography in EMAN2
Wednesday - P.M.
This session will cover the new tools for single particle tomography in EMAN2. Unfortunately, this technique is very memory-intensive and compute-intensive. The 3 gb of ram available on the workshop computers is barely sufficient to do some small examples, and full 3-D alignments of large sets of particles can take many hours of computation.
So, for purposes of the tutorial, we will learn how to use the particle picker, and do a couple of small examples which can be completed in the available time.
DATA
TUTORIAL DOCUMENT
Not available here for now. Get it through this site:
http://blake.bcm.edu/emanwiki/Ws2011/Agenda
Monstrous command for alignment with e2spt_classaverage.py (used to be e2classaverage3d.py)
e2spt_classaverage.py --input=e15pp_set1_stack.hdf --output=e15pp_set1_aligned.hdf --ref=e15ref_prep_icos_bin2.hdf --npeakstorefine=1 -v 3 --mask=mask.sharp:outer_radius=48 --preprocess=filter.lowpass.gauss:cutoff_freq=.02 --align=rotate_translate_3d:search=10:delta=8:dphi=8:verbose=1:sym=icos --parallel=thread:2 --ralign=refine_3d_grid:delta=3:range=9:search=2 --averager=mean.tomo --aligncmp=ccc.tomo --raligncmp=ccc.tomo --shrink=3 --shrinkrefine=3 --savesteps --saveali --iter=8 --normproc=normalize --sym=c1 --keep=0.8 --path=whatever_folder_I_want
Monstrous command for alignment with e2spt_hac.py (used to be e2tomoallvsall.py)
e2spt_hac.py -v 1 --path=AVSAs087 --input=CENTEREDvsD8aliVSapo_s087.hdf --shrink=3 --shrinkrefine=2 --iter=87 --mask=mask.sharp:outer_radius=36 --npeakstorefine=16 --preprocess=filter.lowpass.gauss:cutoff_freq=.02:apix=4.401 --align=rotate_translate_3d:search=4:dphi=12:delta=12 --parallel=thread:24 --ralign=refine_3d_grid:delta=3:range=12:search=2 --averager=mean.tomo --aligncmp=ccc.tomo --raligncmp=ccc.tomo --saveali --savesteps -v 2 --postprocess=filter.lowpass.gauss:cutoff_freq=.02:apix=4.401 --autocenter --exclusive_class_min=8 --normproc=normalize
Not so monstrous command for e2spt_simulation.py (used to be e2tomosim.py)
e2spt_simulation.py --input=../groRef_scaled_bin2.hdf --snr=5 --nptcls=2 --tiltstep=5 --tiltrange=60 --transrange=10 --saveprjs --noiseproc=math.addnoise
Semi monstrous command for e2spt_resolutionplot.py
e2spt_resolutionplot.py --vol1=half1avg.hdf --vol2=half2avg.hdf --output=whatever3.txt --npeakstorefine=1 --verbose=3 --shrink=3 --shrinkrefine=2 --mask=mask.sharp:outer_radius=36 --preprocess=filter.lowpass.gauss:cutoff_freq=.02:apix=4.401 --align=rotate_translate_3d:search=4:dphi=30:delta=30:sym=icos --parallel=thread:8 --ralign=refine_3d_grid:delta=15:range=30:search=2 --aligncmp=ccc.tomo --raligncmp=ccc.tomo --postprocess=filter.lowpass.gauss:cutoff_freq=.02:apix=4.401 --normproc=normalize --sym=icos
Decent command for e2spt_rotationalplot.py
e2spt_rotationalplot.py --input=initModel.hdf --output=toAs129avsaAVG.txt --daz=1 --shrink=1 --dalt=180 --mask=mask.sharp:outer_radius=28
Command for e2spt_radialdensityplot.py
e2spt_radialdensityplot.py --vols=volA_aligned.hdf,volB_aligned.hdf --normproc=normalize.edgemean --lowpass=filter.lowpass.gauss:cutoff_freq=0.02:apix=4.401 --singleplot --output=volAali_VS_volBali.png